If it's not what You are looking for type in the equation solver your own equation and let us solve it.
D( x )
x < 0
x^(1/2) = 0
x < 0
x^(1/2) = 0
x^(1/2) = 0
1*x^(1/2) = 0 // : 1
x^(1/2) = 0
x = 0
x in (0:+oo)
x-(8/(x^(1/2))) = 65 // - 65
x-(8/(x^(1/2)))-65 = 0
x-8*x^(-(1/2))-65 = 0
x-8*x^(-1/2)-65 = 0
t_1 = x^(1/2)
1*t_1^2-8*t_1^-1-65 = 0
1*t_1^2-8*t_1^-1-65*t_1^0 = 0
(1*t_1^3-65*t_1^1-8*t_1^0)/(t_1^1) = 0 // * t_1^2
t_1^1*(1*t_1^3-65*t_1^1-8*t_1^0) = 0
t_1^1
t_1^3-65*t_1-8 = 0
{ 1, -1, 2, -2, 4, -4, 8, -8 }
1
t_1 = 1
t_1^3-65*t_1-8 = -72
1
-1
t_1 = -1
t_1^3-65*t_1-8 = 56
-1
2
t_1 = 2
t_1^3-65*t_1-8 = -130
2
-2
t_1 = -2
t_1^3-65*t_1-8 = 114
-2
4
t_1 = 4
t_1^3-65*t_1-8 = -204
4
-4
t_1 = -4
t_1^3-65*t_1-8 = 188
-4
8
t_1 = 8
t_1^3-65*t_1-8 = -16
8
-8
t_1 = -8
t_1^3-65*t_1-8 = 0
-8
t_1+8
t_1^2-8*t_1-1
t_1^3-65*t_1-8
t_1+8
-t_1^3-8*t_1^2
-8*t_1^2-65*t_1-8
8*t_1^2+64*t_1
-t_1-8
t_1+8
0
t_1^2-8*t_1-1 = 0
DELTA = (-8)^2-(-1*1*4)
DELTA = 68
DELTA > 0
t_1 = (68^(1/2)+8)/(1*2) or t_1 = (8-68^(1/2))/(1*2)
t_1 = (2*17^(1/2)+8)/2 or t_1 = (8-2*17^(1/2))/2
t_1 in { (8-2*17^(1/2))/2, (2*17^(1/2)+8)/2, -8}
t_1 = (8-2*17^(1/2))/2
x^(1/2)-((8-2*17^(1/2))/2) = 0
1*x^(1/2) = (8-2*17^(1/2))/2 // : 1
x^(1/2) = (8-2*17^(1/2))/2
( (8-2*17^(1/2))/2 < 0 i 1/2 in (0:1) ) => x należy do O
t_1 = (2*17^(1/2)+8)/2
x^(1/2)-((2*17^(1/2)+8)/2) = 0
1*x^(1/2) = (2*17^(1/2)+8)/2 // : 1
x^(1/2) = (2*17^(1/2)+8)/2
x^(1/2) = (2*17^(1/2)+8)/2 // ^ 2
x = ((2*17^(1/2)+8)^2)/4
t_1 = -8
x^(1/2)+8 = 0
1*x^(1/2) = -8 // : 1
x^(1/2) = -8
( -8 < 0 i 1/2 in (0:1) ) => x należy do O
x = ((2*17^(1/2)+8)^2)/4
| 210=2(3w-3)+2w | | (9x+7x)(9x-7)= | | -15(3x-5)+2x=100 | | 8/5z=16 | | 12(2x+x)-3x=70 | | 12(2x+x)-3x=100 | | x+2y+4x-30=180 | | Raul=0 | | 15=10+.1Q | | 5x^2+4*cos(x)=3 | | 3a+6+ac+2c=0 | | 12u^5w^3/8u^2v^3-20u^4 | | tan^2x=8/5 | | 20=4-.5Q | | -0.5gt^2+vt=y | | (x-1)/2-(x-2)/3-(x-3)/4=0 | | (x-14)/2-(x-2)/3-(x-3)/4=0 | | 5(3y+4)=-4(6-4y) | | (9x-2x)+6=27 | | x+11=x+(x+1)+(x+2) | | 8(x-5)=27 | | 12(z-3)=2(8z+4)-16 | | 3(9+y)=48 | | e^2z=3i-3 | | x+11=x+(x+1)+x+(x+2) | | 1/30:1/40 | | d/dxsinx/2 | | 6u+12=-4u-8 | | 10+x=8+x | | x+(x+2)+(x+4)=x+(x+8) | | -4x+2+9x=-2x+5x | | -2(x+9)=-1(x+-1)+2 |